Free and open AI-based cloud mask for Sentinel-2

Asking a person on the street ‘what is a cloud mask and why would one need it’, you would probably receive more questions than answers.  Yet people who have worked with EO data for at least a year, or, even better, who have tried to program an automatic classifier, know exactly what we are talking about.

Sentinel-2 is a beautiful European data factory, producing tons of valuable imagery every day. Its full potential is yet to be exploited. The first Sentinel-2 satellite was launched in 2015 and after launching the second satellite (2B) the system reached its full data production capacity in the second half of 2017. One of the factors limiting the usage of Sentinel-2 data is clouds. There is a need for an accurate mask for separating the clear pixels from the corrupted ones. Figure 1 illustrates it well – not only the cloud covered areas are unusable for great majority of EO applications, but also the cloud shadows cause trouble. If you run e.g. a crop classification algorithm on these regions you cannot expect an adequate result.

Figure 1. Cumulus clouds and cloud shadows on Sentinel-2 satellite image

While Sentinel-2 system, functioning as a data factory, is beautiful and undeniably a huge game changer, then the official Sen2cor cloud mask incorporated to the L2A data products can be insufficient in terms of accuracy when used in fully automatic processing chains. The issues rise with underestimating the cloud shadows and small fragmented clouds. While feeding an operational processing chain (such as the grassland mowing detection system of KZ) with this data a lot of corrupted pixels are passed through, deteriorating the accuracy of the end result. In practice we have ended up with aggressive outer buffering and few other post-processing steps to reduce the errors. But obviously these are all just work-arounds without solving the underlying problem. The cloud mask itself, out-of-the-box, should be accurate enough without thinking about it during the work processes.

When digging deeper, you find that the Sen2cor cloud mask processor has a rule-based thresholding decision tree with some post-processing steps (e.g. morphological filtering to reduce the noise). On one hand it is impressive how accurate results this decision tree is able to produce in a global scale, but after the revolution of AI and deep learning one knows that the same task can be solved much better with a different – more modern design.

Leaving the Sen2cor cloud mask as it is, the proposal of KappaZeta was convincing enough that we were given a chance to develop an AI-based Sentinel-2 cloud mask for ESA and we are very grateful for it.

Which other cloud masks are out there?

Firstly, we would like to outline how import is to develop open source cloud masks. There are a few privately developed cloud masks, raising the first question about accuracy figures. If these details are not public, it is also hard to assess how good the offered product really is and that raises many other questions. Furthermore, this adds to the unnecessary amount of time spent on something that could be shared openly, reducing duplication, and contributing to improved products. Therefore, everybody would win time-wise and quality-wise from more open approach and sharing. This is what we believe in and hope that more and more companies over time will come to the same conclusion.

One of the best open source cloud masks is probably s2cloudless by Sinergise. Find more information from here, here and here.

There is just one thing we would like to question and open for discussion. They write that: “We believe that machine learning algorithms which can take into account the context such as semantic segmentation using convolutional neural networks (see this preprint for overview) will ultimately achieve the best results among single-scene cloud detection algorithms. However, due to the high computational complexity of such models and related costs they are not yet used in large scale production.” So CNNs are great, but too heavy to be practical? Let us put this claim in doubt, at least in 2020. One thing is CNN model fitting, which for a complex model can be computationally expensive, that is true. But the other thing is running a prediction with a pre-trained model. This is much cheaper – and this is what you need to do when you put a CNN into production.

One of the best research papers on using deep learning for cloud masking is probably by DLR. We are taking this as one of the starting points for our development. They claim higher accuracies than Fmask (which is roughly on the same level with Sen2Cor) at a reasonable computational cost (2.8 s/Mpix on a NVIDIA M4000 GPU).

There are also several CNN-based cloud masking research papers by the University of Valencia. E.g. by Mateo-García and Gómez-Chova (2018) and Mateo-García, Gómez-Chova and Camps-Valls (2017).

All in all – deep learning as a universal mimicking machine has proven to be at least as accurate in recognizing objects from images and segmenting them semantically as human interpreters. Deep learning has been proven in various domains with image interpretation, speech recognition and, text translation. Computer Vision, which focuses particularly on digital images and videos, has enormous success in medical field, where data labelling is an expensive procedure or rapidly developing autonomous driving cars field, where huge amount of data should be processed in real time. There is every reason to believe that it will excel also in detecting clouds and cloud-shadows from satellite imagery. What determines the success is the quality and variety of the model fitting reference data set.

We believe that cloud masking is such an universal pre-processing step for satellite imagery that sooner or later someone will develop an open source deep learning cloud mask and all the closed source cloud masks become obsolete. Let us then try to be among the first and help the community further.

How?

The goal of the project is to develop the most accurate cloud mask for Sentinel-2. We know it is going to be hard and to avoid going crazy by trying to solve everything at once, we are limiting the scope of the project. We concentrate on Northern European terrestrial summer season conditions. With Northern Europe we mean the area north from the Alps, which has relatively similar nature and land cover. Summer season means the vegetative season – from April to October. We start from terrestrial conditions (with all due respect to the marine researchers), because we believe it has higher impact for developing operational services that make clients happy, for example in the agricultural and forestry sectors.

Everyone, who has worked on machine learning projects, know that the most critical factor for success is the quality and variety of input data. In our case it is the labelled Sentinel-2 imagery following the classification schema agreed in CMIX. Eventually each pixel should have a label, one out of four: 1) clear, 2) cloud, 3) semi-transparent cloud, 4) cloud shadow. For labelling we are using CVAT with a few scripts for automation and thanks to the hard work of our intern Fariha we have already labelled more than 1500 Sentinel-2 cropped 512x512 pixels tiles. The work goes on to have a large and accurate reference set for CNN model fitting.

To be more effective, there are several machine learning techniques we are going to apply:

1) Active learning. To select only the tiles and pixels, which have the highest impact for increasing the accuracy of the model. Labelling is a time-consuming process, and it is critical to do only work that matters.

2) Transfer learning. The idea is to use all possible open sources labelled Sentinel-2 images to train the network and then fine-tune it on our smaller focused dataset.

The initial literature review is completed and we plan to start with applying U-Net on our existing labelled dataset. We still have many open questions, e.g. should we use one of the rule-based masks as an input feature; is the improvement worth the fear that the network can possibly capture the same errors; to what extent we can augment existing features in terms of brightness and angles; can certain calculated S2 coefficients help the network, such as NDVI, NDWI etc?

Last, but not least, it is an open source project. All our results, final software and source code will be freely and openly distributed in GitHub. Openness and accessibility of our software should directly translate into greater usage. We are also intending to learn from the community and take advantage of the existing open source projects and labelled cloud mask reference data sets.

If you have any good suggestions how we could improve our cloud mask or be aware of some parallel developments for cooperation, please let us know. Our project runs from October 2020 to September 2021.

Further information:
Marharyta Domnich
marharyta.dekret@kappazeta.ee

Read more

Data splitting challenge

Almost any machine learning pipeline requires an input data split for training and validation purposes. However, ground truth collection is challenging and could be gathered from different sources. Various sources provide different confidence levels for the labels and in general it would be beneficial to test the model on the most confident samples, but also providing some part of it for training as well, keeping the class distributions as uniform as possible. We are facing the challenge of having unbiased data split with adjustable filters in different tasks and it feels that there is a need for a more general solution or brainstorming from the community.

Mowing detection

One of the examples where we meet the splitting challenge is the mowing detection task. The goal of mowing detection is to predict the time at which the grass on the field was cut. Thus, as part of our mowing detection project, each year we collect field books from farmers and field reports from the inspectors of the local paying agency. The received data is converted and reviewed manually, and some of the ground truth is produced from the manual labelling.

The labels would differ in trustworthiness, depending on the source (farmer field books, inspector field reports, any of the former with manually adjusted dates, or fully manual labelling). Since inspector field reports are the most reliable source, we would use most of them for the validation and test set. However, we would need at least some of them to be present in the training dataset as well. Additionally, each dataset is expected to have as well balanced classes distribution as possible, perhaps with additional filtering to randomly drop least trustworthy samples from the over-represented class.

Considering the aforementioned conditions, let’s say we would like to have 70% of the labelled data for training, 20% for validation and 10% for testing. For validation and testing, we would only use instances from inspector field reports and farmer field books with tweaked dates. For training, we would use data from all sources, including the ones from inspector field reports and tweaked field books which were left over from the test and validation datasets.

Crop classification

Another task we are dealing with is crop classification. We would like to detect the crop type of agricultural fields out of 28 possible classes. Similarly to the mowing detection we have different sources for labels, some of which have been provided by the local Agricultural Registers and Information Board, some from drone observations. For crop classification, class balance distribution plays the core role. In order to mitigate the issue of an unbalanced dataset, undersampling and oversampling can be used. Undersampling and oversampling should be available for the training subset, while for testing we would use some of the fields with labels of high confidence. Some of the classes might have a poor representation, due to which general split ratios might leave the validation or test dataset without any samples, whereas we need to ensure that all datasets have enough samples.

Image credit: Madis Ajaots

Thus, the requirements for splitting are the following. We would like to have 70% / 20% / 10% splits, ensuring that for smaller representing classes at least one instance is present in all sets. Additionally for the test set we would like to have the list of high confidence instances together with random leftover samples that added up to 10% of the whole data.

Generic and configurable

While such processing chains can be implemented, we have found it tricky to have it generic and configurable enough to cater for all sorts of projects with different (and sometimes rapidly changing) requirements.

Current solution

Currently we have separate implementations for mowing detection and crop classification, both of which take input parameters from a config file. The config file is basically python code and supports the definition of custom filter functions for datasets. For each dataset, the current solution invokes custom filters (if any) and then performs random sampling of data indices, leaving the rest of the samples for the next datasets. The samples which have been filtered out, are also left for the next datasets, for each dataset might have a different filter.

The reason why we prefer to use data / sample indices instead of data directly, is to have a layer of abstraction. This way the splitting logic could be agnostic of data type. It would not matter whether a single sample / instance is a raster image, an image time-series or time-series of parameter values which have been averaged over a pre-defined geometry.

For multiclass applications such as crop classification, data indices are sampled separately for each class within each dataset. The splitting also supports capping of samples for classes which are represented too well. However, if there are too few samples per class, a low threshold can be applied such that a different split ratio would be used. For instance, in the case of 70% training, 20% validation and 10% testing dataset with just 9 samples in one of the classes, we might end up with 7 samples in the training dataset, 2 samples in validation and 0 in the test set. To mitigate the issue, we could have the ratios adjusted to 40% training, 30% validation and 30% testing for classes with less than 100 samples.


Ideas for future developments

Instead of project-specific implementation of the splitting logic, we would prefer to have a generic framework for graph-based data splitting with support for cross-validation and bagging. Please let us know if there is such a framework already out there, or if there would be community interest in developing the framework.

Read more