Open access to ALOS-2 radar satellite data?

End of previous year (2019) Japan announced that the Japan Aerospace Exploration Agency (JAXA) will be providing open access to information and data from a suite of their radar satellites (original statement here). To be more specific, free and open access to the wide-swath observation data from the L-band radar satellites, ALOS (ALOS/AVINIR-2, PALSAR) and ALOS-2 (ALOS-2/ScanSAR) will be made available. The price of ScanSAR images is at the moment around 700 euros.

ALOS-2 spacecraft in orbit (image credit: JAXA)

The Japanese space and satellite program consist of two series of satellites – those used mainly for Earth observation and others for communication and positioning. There are 3 Earth Observation satellites in nominal phase, 3 in latter phase in operation and 3 more under development.

Greenhouse gases Observing SATellite-2 "IBUKI-2" (GOSAT-2) is measuring global CO2 and CH4 distribution of lower and upper atmosphere. Climate "SHIKISAI" (GCOM-C) satellite carries an optical sensor capable of multi-channel observation at wavelengths from near-UV to thermal infrared wavelengths (380nm to 12µm) to execute global, long-term observation of the Earth’s environment. Advanced Land Observing Satellite-2 "DAICHI-2" (ALOS-2) aims are to monitor disaster areas, cultivated areas and contribute to cartography.  

ALOS-2, which is specifically interesting for radar enthusiasts, is a follow-on mission from the ALOS “DAICHI”. Launched in 2006, ALOS was one of the largest Earth observation satellites ever developed and had 3 different sensors aboard: PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) for digital elevation mapping, AVNIR-2 (Advanced Visible and Near Infrared Radiometer type 2) for precise land coverage observation and PALSAR (Phased Array type L-band Synthetic Aperture Radar) for day-and-night and all-weather land observation. ALOS operations were completed in 2011, after it had been operated for over 5 years.  

ALOS-2 was launched in 2014 and carries only radar instrument aboard. New optical satellite, ALOS-3, which will improve ground resolution by approx. three times from that of ALOS (2.5 to 0.8 m at nadir, wide-swath of 70 km at nadir), is already under development together with ALOS-4, which will take over from ALOS-2 to improve the functionality and performance.  

Let’s come back to present day. The state-of-the-art L-band Synthetic Aperture Radar (PALSAR-2) aboard ALOS-2 have enhanced performance compared to its predecessor. It has a right-and-left looking function and can acquire data in three different observation modes:

  • Spotlight – spatial resolution 1x3 m, NESZ -24, swath 25 km. 
  • Stripmap – spatial resolution 3-10 m, swath 30–70 km. Consist of Ultrafine (3 m), High sensitive (6 m) and Fine (10 m) modes. 
  • ScanSAR – spatial resolution 60-100 m, swath 350–490 km.  

PALSAR-2  specifications (images credit: JAXA)

Emergency observations have highest priority for ALOS-2, but for systematic observations Basic Observation Scenario (BOS) has been developed. This ensures spatial and temporal consistency at global scales and adequate revisit frequency.  ALOS-2 BOS has separate plans for Japan and for the rest of the world, success rate for these acquisitions is 70–80 %.  

PALSAR-2  observation modes (images credit: JAXA)

Basic observations over Japan are mostly undertaken in Stripmap Ultrafine mode and sea ice observations during winter in ScanSAR mode.

Stripmap Fine and ScanSAR modes are used for global BOS. There are several areas of interest, where ALOS-2 is putting more focus, for example:

  • Wetlands and rapid deforestation regions in ScanSAR mode
  • Crustal deformation regions both in Stripmap Fine and ScanSAR mode
  • Polar regions both in Stripmap Fine and ScanSAR mode

In addition to those special regions global land areas are observed in Stripmap Fine mode at least once per year.

We made a little experiment to test, how many acquisitions we get over city of Tartu per year. Here are the results (platform for viewing and ordering data is here):

Screenshot from Earth Observation Data Utilization Promotion Platform.
YearNumber of images per year

So, compared to Sentinel-1 radar-satellite, ALOS-2 acquisitions frequency is much lower over Europe, and its difficult to develop agriculture monitoring services only on this platform. For forestry and other environmental monitoring, where changes are not happing that often as in agriculture, ALOS-2 can be very useful due to its better spatial resolution than Sentinel-1. Being an L-band satellite it can also penetrate deeper into vegetation and provide information about the lower layers of the canopy. JAXA is already developing ALOS-4 with PALSAR-3 aboard, which will aim broader observation swath compared to the predecessor.

Read more

Overview of new RADARSAT Constellation Mission

Exciting remote sensing news from last year. Canadian Space Agency has launched new generation of Earth observation satellites called The RADARSAT Constellation Mission (RCM) on June 12, 2019 aboard a SpaceX Falcon 9 rocket. It became operational in December 2019 and provides data continuity to RADARSAT-1 (not operational anymore) and RADARSAT-2 (still operational) users.
Illustration of the three RCM satellites on the same orbital plane. Image credit: Canadian Space Agency

RCM is a combination of three identical and equally spaced satellites, flying in the same orbit plane 32 minutes apart at an altitude of 600 km. Each of the spacecraft carries Synthetic Aperture Radar (SAR) aboard, plus a secondary sensor for Automatic Identification System (AIS) for ships. When RADARSAT-2 has left- and right-looking operation, then RCM is only right-looking, because multiple satellites increase revisit times and eliminate the need to look both ways. The SAR device aboard RCM satellites is quite similar to RADARSAT-2 – C-Band antenna, 100 MHz bandwidth, 4 regular polarization modes (HH, VV, HV, VH) plus compact polarimetry.  Polarization isolation is slightly better: >30 dB. See detailed comparison of RADARSAT satellites here.

The constellation system provides better coverage with smaller and less expensive satellites. This configuration allows for daily revisits of Canada’s territory, as well as daily access to 90% of the world’s surface. RCM can provide a four-day exact revisit (3 satellites equally phased in a 12 day repeat cycle orbit), allowing coherent change detection with InSAR. For specific applications (ship detection, maritime surveillance) data latency from acquisition to delivery can be only 10-30 minutes, but in general it will be from hours to 1 day.

RCM has several observation modes, but the mission is primarily designed for medium-resolution monitoring:

  • Low resolution (100 m), swath 500 km, NESZ -22 dB
  • Medium resolution (16, 30, 50 m), swath 30-350 km, NESZ -25…-22 dB
  • High and very high resolution (3-5 m), swath 20-30 km, NESZ -17..-19 dB
  • Spotlight (1x3 m), swath 20 km, NESZ -17 dB
    RADARSAT Constellation Mission observation modes. Image credit: Canadian Space Agency.

Read more

Base Camp Hackathon 2020

KZ extended team during hackaton
In the beginning of March our team participated Base Camp Spring 2020 hackaton organized by Garage48 and Superangel.
Our aim was to develop prototype for our time series API sandbox and map customer segments. Long weekend was successful and besides great mentoring, new ideas and contacts, we won the runner-up prize "Superangel’s Support on Steroids package".
Base Camp Hackathon is an exclusive hackathon format, designed for young startups that already have a working prototype. Latest edition took place from 6th to 8th of March 2020 in Tallinn, Estonia and 12 teams, Kappazeta among them, were invited to develop their prototypes or products even further. For this 3-day event Teet Laja and Raja Azmir joined our team to help us out in front-end development and business analysis.

The results? During the productive weekend we conducted couple of possible users interviews to validate the new product idea and created landing page to test our concept and capture contacts of interested people. 
Also a simple API Sandbox was created, where potential customers have the chance to test core possibilities of our service. We are not yet there to provide world-wide near real time Sentinel-1 time series API, but we are moving towards there and improving our process chain rapidly. Next step is to take whole process to cloud platform (DIAS), to be closer to input satellite data and boost performance. Exciting times! 
Read more